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Abstract

The regulatory Community Multiscale Air Quality (CMAQ) model is a means to understanding 

the sources, concentrations and regulatory attainment of air pollutants within a model’s domain. 

Substantial resources are allocated to the evaluation of model performance. The Regionalized Air 

quality Model Performance (RAMP) method introduced here explores novel ways of visualizing 

and evaluating CMAQ model performance and errors for daily Particulate Matter ≤ 2.5 

micrometers (PM2.5) concentrations across the continental United States. The RAMP method 

performs a non-homogenous, non-linear, non-homoscedastic model performance evaluation at 

each CMAQ grid. This work demonstrates that CMAQ model performance, for a well-documented 

2001 regulatory episode, is non-homogeneous across space/time. The RAMP correction of 

systematic errors outperforms other model evaluation methods as demonstrated by a 22.1% 

reduction in Mean Square Error compared to a constant domain wide correction. The RAMP 

method is able to accurately reproduce simulated performance with a correlation of r = 76.1%. 

Most of the error coming from CMAQ is random error with only a minority of error being 

systematic. Areas of high systematic error are collocated with areas of high random error, 

implying both error types originate from similar sources. Therefore, addressing underlying causes 

of systematic error will have the added benefit of also addressing underlying causes of random 

error.
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1. Introduction

Particulate Matter ≤ 2.5 micrometers in diameter (PM2.5) is one of the six “criteria air 

pollutants” regulated in the United States (Boldo et al., 2006; Pope et al., 2009) due to its 

association with adverse health effects, including cardiovascular and respiratory disease and 

mortality (Beelen et al., 2007; Krewski et al., 2009; Pope et al., 2004). The Community 

Multiscale Air Quality (CMAQ) model is used for regulatory purposes to assess attainment 

and estimate PM2.5 concentration. Substantial efforts are made to understand the model 

performance of CMAQ (Appel et al., 2013a, 2008; Carlton et al., 2010; Foley et al., 2015a, 

2015b, 2010). Past work evaluating model performance typically gives modeling 

performance statistics over an aggregated level (e.g. monitoring locations, regions of the 

country, monitoring networks, etc.) (Simon et al., 2012). For the modeling domain the size 

of the continental United States, metrics are typically calculated for the Eastern versus 

Western US, urban stations versus rural stations, summer versus winter monitoring, etc. 

(Appel et al., 2013b). Displaying model performance metrics at each monitoring site 

location across the US reveals that CMAQ performance changes in a non-homogenous 

manner (Appel et al., 2012). However, model performance at a specific unmonitored space/

time location is typically not explored. Therefore current methods fail to assess geographical 

or temporal changes of model performance across the spatiotemporal continuum, 

particularly in-between monitors.

The goal of this work is to address this significant knowledge gap by introducing a method 

that assesses model performance at any space/time region of interest across the 

spatiotemporal continuum. Advantages for assessing model performance at any region 

across a continuum include being able to 1) exactly delineate geographical patterns of 

modeling errors and 2) correct systematic errors across the modeling domain for individual 

CMAQ grid concentrations.
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Systematic errors are consistent deviations of modeled data from observed data. Systematic 

errors, once assessed, can be used to correct the modeled value. The remaining error, i.e. the 

random noise of the modeled value around the observed data, is the random error. While 

current CMAQ model performance evaluation methods are multifaceted (Dennis et al., 

2010) and use a wide array of metrics to quantify performance (Kang et al., 2007; Thunis et 

al., 2012; USEPA, 2005; Venkatram, 2008), this work specifically focuses on a set of metrics 

that investigate systematic and random errors. Hence, to achieve our goal, we introduce 

modeling error statistics that parse total error into systematic and random errors. Few studies 

have apportioned error in this manner (Solazzo and Galmarini, 2016).

The Regionalized Air quality Model Performance (RAMP) method introduced in this work 

assesses model performance across the spatiotemporal continuum of daily PM2.5 across the 

continental US. Our framework is a regionalized space/time extension of the Constant Air 

quality Model Performance (CAMP) method (de Nazelle et al., 2010) and parallels the work 

of Xu et al. (Xu et al., 2016). The CAMP method was originally created to account for the 

non-linear and non-homoscedastic relationship between modeled and observed ozone data in 

North Carolina for a particular ozone episode. The CAMP method assumes that model 

performance is homogenous across the state and does not change as a function of the space/

time CMAQ grid locations. This assumption of homogeneity of model performance begins 

to break down as the modeling domain increases in size, particularly when this increase is 

substantial. The novel RAMP method introduced here for PM2.5 extends the CAMP method 

by accounting for the non-homogeneity of model performance in a regionalized fashion 

across the entirety of a modeling domain and fully characterizes the non-linear and non-

homoscedastic relationship at any space/time region for any modeled value of interest.

This work demonstrates the use of the RAMP for daily PM2.5 mass predicted by CMAQ 

across the entirety of the continental United States. As an evaluation of the RAMP method, 

we have chosen a regulatory episode developed for the years 2001 and 2002. The model 

performance for this episode has been well documented and thus provides an ideal case 

study. The results of the RAMP analysis include maps showing the geographical variations 

of systematic and random errors displayed at the resolution of an individual CMAQ grid 

cell. These results provide new insights about model performance that complement existing 

performance evaluation methods. The RAMP results are helpful in making decision on 

resource allocation for further improvement in the air quality model. Furthermore, 

calculating systematic errors for individual CMAQ grids facilitate systematic error 

correction leading to maps of PM2.5 concentrations with improved mapping accuracy.

2. Materials and Methods

2.1 Observed and Modeled Data

Daily observed PM2.5 for each space/time location during 2000–2002 were constructed 

based on monitoring data from monitoring stations measuring either hourly or daily PM2.5 

obtained from the EPA’s Air Quality Systems (AQS) data base (US EPA, 2011). Daily 

PM2.5 data were also constructed from CMAQ modeled data for years 2001 and 2002 using 

CMAQv4.5 across the contiguous United States on a 36 km grid. For more detailed 

Reyes et al. Page 3

Atmos Environ (1994). Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



information regarding the aggregation and pairing process of observed and modeled data see 

Supplementary data.

2.2 Variable Definition

Random variables X are in upper case and known values are in lower case. Let X̂(p) be the 

random variable representing the observed concentration at a single space/time location p = 

(s, t) where s is the spatial location and t is time, x̂(p) be its known value (i.e. realization) at 

space/time location p and x̃(p) be the CMAQ modeled value at space/time location p. The 

variable x̃(p) covers the entirety of the domain and is known everywhere. We define error as

(Equ. 1)

Error is defined as e(p) = x̃(p) − x̂(p) at locations where the observed data are known. The 

definition of error in this work is a deviation from what is typically used in the model 

performance literature. The differences in the nomenclature are explicitly stated in 

Supplementary data (Table A1 and Table A2).

2.3 Systematic and Random Error Statistics

In this work metrics are geared towards dividing error in a dichotomous manner. Namely, 

metrics are divided into systematic and random errors. Systematic errors are consistent 

errors between observed and modeled CMAQ data and can be removed through calculating 

the mean systematic error. Random errors are the residual errors remaining once the 

systematic error is removed. Random errors can be conceptualized as the random noise 

between CMAQ and observed data. Total error is the sum of the two. In the naming 

convention of a statistic the first letter(s) is used to identify the statistical operator as 

follows: M=mean, V=variance, S=Standard deviation, RMS=square Root of the Mean of 

Squared values. The last letter(s) is used to identify the value of interest as follows: E=Error 

(Equ. 1), SE=Squared Error=E2, S=Standardized error=E/σE, NE=Normalized Error=E/x̂ 
and . Statistics that are calculated over an entire 

domain  are  and . ME2( ) 

quantifies the systematic error, VE( ) quantifies the random error and MSE( ) = ME2( ) + 

VE( ) quantifies the total error. The equations of systematic, random and total error can be 

represented pictorially in the Supplementary data (Fig. A1). Other statistics used in model 

performance evaluation include the square Root of the Mean of Squared Standardized errors 

(RMSS) and Mean of the square Root of variance (MR).

2.4 Constant Air quality Model Performance (CAMP)

The CAMP method (de Nazelle et al., 2010) performs a model performance analysis that 

accounts for the non-linearity and non-homoscedastic behavior of model performance with 

respect to the modeled value x̃k. The CAMP method does this by modeling the mean λ1 (x̃k; 

) = M[X̂|x̃k; ] and variance λ2 (x̃k; ) = V[X̂|x̃k; ] of the observed value X̂ as function 

of a given model value x̃k across the domain  using the equations
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(Equ. 2)

(Equ. 3)

where n(x̃k; ) is the number of paired modeled x̃i and observed x̂i values across the space 

time domain  such that x̃k − Δx̃ ≤ x̃i ≤ x̃k + Δx̃ where Δx̃ is a small tolerance corresponding 

to half of a decile of modeled values in  around x̃i and it is assumed that x̂i ~ iid.

The CAMP method does not investigate how λ1 (x̃k; ) and λ2 (x̃k; ) change across the 

domain .

2.5 Regionalized Air quality Model Performance (RAMP)

The Regionalized Air quality Model Performance (RAMP) method introduced here consists 

of extending the CAMP method (de Nazelle et al., 2010) by regionalizing the model 

performance to a space/time region ℛ(p) contained within  associated with the space/time 

coordinate p. In this work the region ℛ(p) was selected such that it contains all paired 

modeled and observed data from the 3 closest stations within 180 days of p, visualized 

through a regionalized “S-curve” (Fig. 1). The 3 closest stations within 180 days were 

chosen for being as spatially specific as possible while still maintaining a stable pattern with 

the associated regionalized λ1 (x̃k; ℛ(p)) = M[X̂|x̃k; ℛ(p)] and λ2 (x̃k, ℛ(p)) = V[X̂|x̃k; 

ℛ(p)] parameters (see Supplementary data for S-curve parameter optimization). The 

regionalized parameters are defined as

(Equ. 4)

(Equ. 5)

where n(x̃k; ℛ(p)) is the number of paired modeled and observed points within ℛ(p) and 

around x̃k.

An efficient numerical implementation of the calculation of λ1 (x̃k; ℛ(p)) and λ2 (x̃k; ℛ(p)) 

is performed as follows. All modeled/observed (x̃i, x̂i) pairs within ℛ(p) are divided into 

deciles based off all the collected x̃i (Fig. 1). The mean and variance of observed values in 

each decile x̃l are calculated to obtain λ1,l (x̃l; ℛ(p)) and λ2,l (x̃l; ℛ(p)), respectively. A 

linear interpolation between deciles is performed to obtain λ1 (x̃k; ℛ(p)) and λ2 (x̃k; ℛ(p)). 

If the S-curve contains less than 150 pairs, points from the nearest stations are pulled in until 
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at least 150 pairs are obtained. When calculating the variance of the error correction of the 

modeled data (Equ. 5), it is assumed x̂i ~ iid. Thus, λ1 (x̃k; ℛ(p)) and λ2 (x̃k; ℛ(p)) describe 

the mean and variance of observed concentration as a function of both x̃k and the space/time 

region ℛ(p). For example, in Fig. 1 for the given ℛ(p) and x̃k = 5.6 µg/m3, λ1 (x̃k; ℛ(p)) = 

7.9 µg/m3 and . Other S-curves are visualized in Supplemental 

data.

There is a correspondence between the parameters λ1 (x̃k; ℛ(p)) and λ2 (x̃k; ℛ(p)) and 

systematic and random errors. From Equ. 1 we have X̂ = x̃ − E, which, once substituted into 

λ1 (x̃k; ℛ(p)) and λ2 (x̃k, ℛ(p)) yields

(Equ. 6)

(Equ. 7)

where ME(x̃k; ℛ(p)) and VE(x̃k; ℛ(p)) are the mean and variance, respectively, of the error 

associated with an arbitrary value x̃k predicted within region ℛ(p).

We also define  and  as the mean 

and variance of observed concentration when x̃k = x̃(p), where x̃(p) is the CMAQ modeled 

value at p. By replacing x̃k with x̃(p) in Equ. 6 and Equ. 7, we obtain

(Equ. 8)

(Equ. 9)

Equ. 8 and Equ. 9 provide a physical interpretation of systematic and random errors. The 

systematic error ME(x̃(p); ℛ(p)) is the error correction that can be applied to the modeled 

value x̃(p) in region ℛ(p) to produce a corrected modeled estimate , and the 

random error quantified by VE(x̃(p); ℛ(p)) characterizes the residual uncertainty associated 

with the systematic error corrected modeled estimate. In this work ME(x̃(p); ℛ(p)) and 

VE(x̃(p); ℛ(p)) can be approximated by  and 

, respectively, where for a given 

p, n(p) is equal to the number of paired modeled and observed points in ℛ(p).

The RAMP method provides the statistical distribution of observed air pollution as
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(Equ. 10)

where  and  are the mean and variance of observed values given the 

modeled value x̃(p), but is flexible enough to accommodate other distributions. In short, the 

RAMP method 1) calculates the sample mean and sample variance of the observed data that 

are contained within a given region R(p) and close in value to the CMAQ concentration x̃(p) 

through the parameters  and , 2) equates  and 

with systematic and random error parameters ME(x̃(p), R(p)) and VE(x̃(p), R(p)) and 3) 

adjusts the CMAQ value and with a corresponding uncertainty through the parameters 

 and .

2.6 Validation and Stochastic Simulation

Validation is performed by comparing the accuracy of the model correction performed by 

three approaches: the Constant, CAMP and RAMP correction methods. The Constant 

correction method is defined through

(Equ. 11)

with associated error variance

(Equ. 12)

i.e. the correction ME( ) and its associated error variance VE( ) are constant across the 

entirety of the domain with respect to both modeled value x̃k and location p. The CAMP 

method assumes that the model performance of CMAQ is represented by a domain wide S-

curve λ1 (x̃k; ) and λ2 (x̃k; ) (Equ. 2, 3) that are a function of the modeled value x̃k, but 

not a function of space/time location p. In the CAMP method the correction for x̃(p) is 

performed by substituting x̃k with x̃(p) in the domain-wide S-curve, i.e. using the correction

(Equ. 13)

with associated error variance

(Equ. 14)

The RAMP correction on the other hand is done using Equ. 8 and 9. The corrected λ1 (p) 

values for the Constant (Equ. 11), CAMP (Equ. 13) and RAMP (Equ. 8) methods are 
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compared by calculating performance statistics between paired λ1 (p) and x̂(p) values for 

2001. The performance of λ2 (p) is assessed through standardized errors (i.e. ).

We also conduct a stochastic simulation to test how well each method reproduces the 

simulated values. The maps of λ1 (p) and λ2 (p) obtained in this work are defined as being 

the true mean and variance of observed values. We also select x̃(p) from this work as being 

the true modeled value. We randomly generate x̂*(p) ~ N(λ1 (p), λ2 (p)) and then we re-

calculate λ1*(p) and λ2*(p) using the Constant, CAMP and RAMP methods based only on 

paired x̃(p) and x̂*(p). Lastly, λ1*(p) and λ2*(p) are compared with λ1 (p) and λ2 (p) 

visually through maps and through statistical metrics to evaluate how well λ1*(p) and 

λ2*(p) are able to capture the spatial variability in the true mean, λ1 (p), and variance, λ2 

(p), of observed values.

3. Results and Discussion

3.1 Model Performance Evaluation Demonstrating Results of the RAMP Analysis

A demonstration of the RAMP method was performed using daily PM2.5 concentrations 

predicted by CMAQv4.5 at the 36 km grid level for 2001 across the continental United 

States. CMAQv4.5 is the most recent version available for 2001 across the continental US. 

Although newer versions of CMAQ exist for later years, it was critical to analyze model 

performance in 2001 due to an ongoing epidemiological study focused on novel 

neurodegenerative PM2.5 health end points and its association with loss of brain mass in 

older women (Casanova et al., 2016; Chen et al., 2015). From an epidemiologic perspective, 

a model performance evaluation that can distinguish systematic from random error is 

especially important for a model version with known deficiencies (Foley et al., 2010). This 

information can inform subsequent error correction of systematic errors and data fusion 

methods.

Results of the RAMP analysis can be visualized for July 1, 2001 (Fig. 2). The RAMP results 

indicate that there are geographical patterns in ME2(p) = ME2(x̃(p); ℛ(p)) (Fig. 2a) and 

VE(p) = VE(x̃(p); ℛ(p)) (Fig. 2b). This indicates that both systematic errors and random 

errors are non-homogenous as demonstrated by the > 10 fold variation in ME2(p) and VE(p) 

across the continental United States on that day. The maps shown in Fig. 2a–b allow for the 

identification of regions with high systematic and random errors. This is critical information 

needed to better understand the spatial uncertainty of model performance of the CMAQ 

predicted values x̃(p) across a given day (Fig. 2c). The RAMP analysis also produces 

 (Fig. 2d). In addition to the results shown in Fig. 2, the RAMP analysis produces 

a rich set of more detailed model performance metrics (see Supplementary data).

The domain wide model performance of CMAQ is assessed by the performance statistics 

ME( ), , MSE( ) and r( ) calculated over a domain  corresponding to the 

continental United States in 2001. These statistics are shown in the first column of Table 1. 

Due to the influential nature of highly skewed standardized errors, all data were removed 

whose standardized errors were either less than the 0.1 percentile or greater than the 99.9 
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percentile, constituting 348 data points. As shown in Table 1, the mean error for CMAQ is 

ME( ) = −1.05 (µg/m3), indicating that CMAQv4.5 has systematic errors that 

underestimates PM2.5 by 1.05 µg/m3 across the continental United States in 2001 on 

average. Interestingly, , indicating that random errors are much 

larger than systematic errors. These systematic and random errors result in a total error of 

MSE( ) = 61.5 (µg/m3)2 and a precision quantified by a correlation r( ) = 0.589 between 

observed and modeled values.

3.2 Validation Results

The validation statistics of three model performance evaluation methods (Constant, CAMP 

and RAMP) are shown in Table 1. These methods have different assumptions. The Constant 

method assumes that model performance is constant across , the CAMP method accounts 

for non-linear and non-homoscedastic model performance and the RAMP method accounts 

for non-linear, non-homoscedastic and non-homogeneous model performance. The 

validation statistics are calculated using a corrected CMAQ value λ1 (p) and associated error 

variance λ2 (p) given by (Equ. 11, 12), (Equ. 13, 14), and (Equ. 8, 9) for the Constant, 

CAMP and RAMP methods, respectively.

Validation of λ1 (p) is performed by comparing the ME( ), , MSE( ) and r( ) 

performance statistics of the raw CMAQ estimate (the first column of Table 1) with λ1 (p) 

for each of the three performance evaluation methods (the last three columns of Table 1). 

The magnitude of ME( ) drops from −1.05 (µg/m3) for CMAQ to 0.0304 (µg/m3), 0.0281 

(µg/m3) and −0.0202 (µg/m3) for the Constant, CAMP and RAMP methods, respectively. 

This was expected by design due to each method eliminating systematic errors across . The 

model performance evaluation methods differ in their abilities to reduce random errors, as 

demonstrated by the  statistic. The  statistic progressively reduces from 

7.77 (µg/m3) for CMAQ to 7.18 (µg/m3), 6.58 (µg/m3) and 6.34 (µg/m3) for the Constant, 

CAMP and RAMP methods, respectively. This translates in a total error that is lower for 

RAMP (MSE = 40.1 (µg/m3)2) than for CAMP (MSE = 43.3 (µg/m3)2) and the Constant 

method (MSE = 51.5(µg/m3)2). This corresponds to a 22.1% reduction in MSE from the 

Constant to the RAMP method. This finding is further confirmed by the correlation between 

observed and λ1 (p) values, which progressively increases from r = 0.589 for CMAQ to r = 

0.698 for RAMP. These results demonstrate that λ1 (p) calculated by the RAMP method is 

more accurate than the raw CMAQ output or the CMAQ corrected values obtained from the 

other model performance evaluation methods.

Validation of λ2 (p) is performed by comparing the VS( ), RMSS( ) and MR( ) 

performance statistics across the different model performance evaluation methods. The VS 

and RMSS are the variance and root mean squared error, respectively, of the Standardized 

error S, where  for the Constant method and 

 for the CAMP and RAMP methods. The standardized errors 

should ideally have a standard normal distribution, hence VS and RMSS should ideally be 1. 

VS is 0.766 for the Constant method, 0.823 for the CAMP method and 1.05 for the RAMP 
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method. The RAMP λ2 (p) is more accurate than the Constant or CAMP λ2 (p). The VS for 

the Constant method and CAMP, being less than one, overestimate the CMAQ prediction 

error variance. This result is confirmed by the RMSS and is further quantified by the MR. 

The MR is the mean of the CMAQ prediction error standard deviations. The MR( ) for 

RAMP indicates that the random error of CMAQ prediction has a standard deviation of 5.45 

µg/m3 across  on average. The MR( ) for the Constant method is 8.20 µg/m3, indicating 

that the Constant method leads to a substantial overestimation of random errors by 50.5% 

over RAMP estimates. The overestimation of random error is attenuated with the CAMP 

method, which has an MR( ) equal to 70.4 µg/m3 corresponding to a 29.2% overestimation 

compared to the RAMP estimates.

Overall these validation results demonstrate that the RAMP method provides a λ1 (p) value 

that better corrects systematic errors than other performance evaluation methods and 

provides a λ2 (p) value that better estimates random errors compared to other model 

performance evaluation methods. We hypothesize that this is due to the RAMP method 

being better able to assess the spatial and temporal uncertainty of systematic and random 

errors compared with other model performance evaluation methods.

3.3 Stochastic Simulation Results

The map of the true systematic error x̂(p) − λ1 (p) for July 1, 2001 displays by design clear 

geographical trends identifying well defined regions where systematic error is large 

(Supplementary data). The map of re-calculated systematic error x ̂(p) − λ1*(p) obtained 

using the Constant method is constant and is therefore unable to capture the spatial 

variability in systematic errors. The corresponding map obtained with the CAMP method is 

able to capture spatial variability occurring across the entire modeling domain, but unable to 

capture the regional and fine scale variability in systematic errors. However, the 

corresponding RAMP map captures spatial variability of systematic errors at a fine spatial 

scale. The correlation coefficient r calculated between x̂(p) − λ1 (p) and x̂(p) − λ1*(p) for 

July 1, 2001 is 0.0%, 24.0% and 76.1% for the Constant, CAMP and RAMP methods, 

respectively. These results demonstrate that the RAMP method is better able to capture fine 

scale spatial variability of systematic errors.

Similar results were found when comparing the true λ2 (p) with λ2*(p) obtained for each 

model performance evaluation method, again for July 1, 2001. Qualitatively, the λ2*(p) map 

obtained with the Constant method misrepresents the true λ2 (p) map by failing to capture 

any of the spatial variability in random errors and overestimating the average random error. 

The λ2*(p) map obtained with the CAMP method is a considerable improvement by 

reproducing variability at a long scale distance. However, visually, the CAMP method is 

unable to capture fine scale variability. The λ2*(p) map obtained with the RAMP method 

provides a good visual reproduction of the true random error. These results are quantitatively 

supported by the correlation coefficient between λ2 (p) and λ2*(p) of 0.0%, 5.18% and 

54.5% for the Constant, CAMP and RAMP methods, respectively.

These results demonstrate that in situations where there is regional variability in model 

performance, the RAMP method is better able to estimate the spatial variability of 

systematic errors compared to the Constant and CAMP methods. This implies the RAMP 

Reyes et al. Page 10

Atmos Environ (1994). Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



method should be considered for performance evaluation in future studies when it is 

plausible for model performance to vary spatially.

3.4 Evidence and Implications of Non-Linear and Non-Homoscedastic Model Performance

This work contributes novel evidence that the performance of air quality models is non-

linear and non-homoscedastic. That is, λ1 and λ2 are a non-linear function of the modeled 

value x̃k. This is seen through 1) the comparison of the Constant method and the CAMP 

method and 2) the stochastic simulation results. The Constant method assumes that λ1 − x̃k 

and λ2 do not vary as a function of x̃k. The CAMP method assumes that λ1 and λ2 are non-

linear functions of x̃k. The first evidence of non-linear and non-homoscedastic behavior 

comes from the validation results. The MSE reduces from 51.5 (µg/m3)2 for the Constant 

method to 43.3 (µg/m3)2 for the CAMP method, corresponding to a 16% reduction in MSE 

that demonstrates that model performance improves for a non-linear and non-homoscedastic 

model. In the stochastic simulation results, the Constant method is unable to capture the 

spatial variability in systematic and random errors whereas the CAMP method is able to 

capture domain-wide variability of these errors. Furthermore, both the validation and 

stochastic simulation results indicate that the Constant method significantly over predicts 

random errors compared to the CAMP method. Finally, the non-homoscedastic behavior in 

model performance is evidenced by maps of λ2 (x̃k; ℛ(p)) for different fixed xk̃ values (see 

Supplementary data), showing that the error variance changes substantially from one value 

of x̃k to another for a given region ℛ(p).

From these results, one should be cautious when using linear and homoscedastic model 

performance evaluation methods to explore the spatial variability of model performance. 

This is the usual practice of current approaches in which models can be expressed as X̃(s) = 

β0(s) + β1(s)X̂(s) + ε(s) (Fuentes and Raftery, 2005) or X̂(s, t) = β0(s, t) + β1(s, t)x̃(s, t) + 

ε(s, t) (Berrocal et al., 2010). In both cases the relationship is linear and homoscedastic 

when assuming a constant error variance of the noise term (i.e. ). This may 

undermine their capacity to fully capture spatial variability in model performance. 

Furthermore, these methods may overestimate the error variance. By contrast the RAMP 

method provides a novel alternative that fully captures the space/time variability of non-

linear, non homoscedastic model performance and, as a result, provides a novel description 

of the spatial patterns in systematic and random errors across the spatiotemporal continuum.

3.5 Spatial Patterns of Systematic and Random Errors

To better understand the magnitude of the systematic errors ME2(p) (Fig. 2a), we also show 

a map of ME(p) (Fig. 3), which differentiates areas where daily PM2.5 concentrations are 

over predicted (i.e. ME > 0) versus under predicted (i.e. ME < 0). The map of ME(p) is in 

line with known CMAQ deficiencies. That is, CMAQ generally struggles with estimating 

high values of PM2.5 (Yu et al., 2012, 2008). Areas shown with negative ME(p) values in 

Fig. 3 (i.e. where PM2.5 is under predicted) coincide with areas shown to have high λ1 (p) 

values in Fig. 2d (i.e. where PM2.5 levels are high).

The RAMP analysis provides a map of ME2(p) across the continuous space/time domain (as 

opposed to being restricted to only monitoring stations). This makes it possible to clearly 

Reyes et al. Page 11

Atmos Environ (1994). Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



delineate and identify specific regions with high ME2(p) values and quantify their 

geographical extent. To illustrate this capability, we identified in regions (labeled 1–6 in Fig. 

2a) defined as having relatively high systematic error (i.e. ME2(p) ≥ 17.4 (µg/m3)2). The 

areas of high systematic error are quantified as follows: (1) the Great Lakes (15,552 km2), 

(2) the Appalachian Mountains (116,640 km2), (3) the South East (38,880 km2), (4) 

Southern California (73,872 km2), (5) Northern California (75,168 km2) and (6) the Rocky 

Mountains (290,304 km2).

Some of the regions identified for their high systematic errors are corroborated in the 

literature. The over prediction in region 1 (the Great Lakes) is in line with an overestimation 

of residential wood burning in the region reported in the National Emissions Inventory (NEI) 

(Appel et al., 2008). Region 3 (South East) includes Atlanta where PM2.5 is over estimated 

and an area to its South where PM2.5 is under estimated. CMAQ is known to under predict 

PM in the South East. Some of this under prediction may be associated with highly 

uncertain SOA chemistry, particularly including chemistry from biogenic emissions (Chan et 

al., 2010; Morris et al., 2006). Likewise high systematic error in the mountain regions 2 and 

6 (Appalachia Mountains and the Rockies) can be associated with the known difficulties in 

modeling air quality accurately on and near mountain ranges (Steyn et al., 2013). The causes 

of high systematic error identified by RAMP may not be well documented in other regions. 

For example, the identification of Northern California (region 4) and Southern California 

(region 5) may serve as a trigger for further investigation into the constituents and chemical 

pathways of PM2.5 (Motallebi et al., 2003; USEPA, 2001) to investigate causes that may 

lead to systematic errors in these areas. To our knowledge this is the first work in the model 

performance literature to delineate these regions and quantify their geographic extent.

The map of VE(p) in Fig. 2b delineates areas with high random errors. It is interesting to 

note that areas of high systematic errors are always fully contained within areas of high 

random error as seen by comparing Fig. 2a and Fig. 2b. To our knowledge these are the first 

maps delineating regions of high random errors and finding general collocation with (and 

about twice the magnitude of) systematic errors. If both systematic and random errors are 

caused by similar processes, then reducing systematic errors could have the added benefit of 

also addressing collocated random errors.

4. Conclusions

This work introduces a spatiotemporal approach that can estimate and distinguish systematic 

error from random error of predictions made by regulatory air quality models at any location 

within a given modeling domain. The estimation of systematic and random errors is created 

in a manner that does not assume that the relationship between observed and modeled values 

is linear or homoscedastic, and estimation of errors is performed in a manner that is 

regionalized. By estimating errors across a continuous geographical domain for a given day 

of interest, this approach permits the production of maps delineating areas of high errors. 

These maps are useful to 1) assess model performance by quantifying systematic and 

random errors at a fine spatial resolution across the entire space/time domain where 

monitoring does not exist and 2) do a model correction of systematic errors of the 

CMAQv4.5 estimates of PM2.5 for 2001 for individual grids. Future works include 
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performing a data fusion of RAMP model corrected values and observations using the 

geostatistical Bayesian Maximum Entropy (BME) method of PM2.5 (Akita et al., 2012; 

Allshouse et al., 2009; de Nazelle et al., 2010; Reyes and Serre, 2014; Xu et al., 2016), for 

increased prediction accuracy, and updating the RAMP analysis for other years. This future 

work will be critical for ongoing epidemiologic studies analyzing the effect of air pollution 

on brain aging for women in the Women’s Health Initiative-Memory Study who were 

exposed to air pollution between 1999 and 2006 (Casanova et al., 2016; Chen et al., 2015). 

The application of RAMP on CMAQv4.5 demonstrated that the RAMP analysis was able to 

successfully identify known regions of errors of this version of CMAQ. This work provides 

a model correction for 2001 based on the most recent of CMAQ for this year and provides a 

useful baseline against which future versions can be compared to explore changes in 

systematic and random errors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Error correction performed for individual CMAQ grids

• Maps created showing model performance at unmonitored locations

• Most error coming from CMAQ is random error

• There is a need to evaluate model performance in a regionalized manner
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Figure 1. 
RAMP analysis for an arbitrary CMAQ grid location on July 1, 2001 for daily PM2.5. The 

black dots are all the paired modeled and observed daily PM2.5 concentrations within a 

space/time region ℛ(p) consisting of the 3 closest stations to the CMAQ grid location of 

interest within 180 days of July 1, 2001, with modeled data on the independent axis and 

observed data on the dependent axis. The vertical black lines identify the 10 bins used to 

stratify all the paired data in which each bin contains one decile of all the paired points. The 

dotted black line is the one-to-one line between the modeled and observed data. The red + 

marker in each bin denotes λ1,l (x̃l, ℛ(p)), the average of paired observed values within the 

l-th decile bin. The blue × marker in each bin denotes the square root of λ2,l (x̃l; ℛ(p)), the 

standard deviation of paired observed values within that bin. As shown in the figure, the + 

and × markers are linearly interpolated to obtain the λ1 (p) and  values, respectively, 

corresponding to the CMAQ modeled data x̃(p) within ℛ(p).
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Figure 2. 
Maps of RAMP error and RAMP error correction of CMAQ. Daily PM2.5 across the 

continental United States on July 1, 2001 displaying (a) RAMP ME2(p), (b) RAMP VE(p), 

(c) CMAQ concentration x̃(p) and (d) . Plots (c) and (d) are in µg/m3 and (a) and 

(b) are in (µg/m3)2. Plot (b) shows 6 regions of large random error delineated in the dashed 

green line with the same regions delineated and labeled in (a). Delineated regions include (1) 

the Great Lakes, (2) the Appalachian Mountains, (3) the South East, (4) Southern California, 

(5) Northern California and (6) the Rocky Mountains.
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Figure 3. 
Map of RAMP mean error. Daily PM2.5 across the continental United States on July 1, 2001 

displaying ME(p) in µg/m3. The 6 regions of high random error delineated in Fig. 2b are 

delineated in the dashed orange line.
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Table 1

Validation statistics. Statistics of the validation results of daily paired observed PM2.5 and λ1 (p) and λ2 (p) 

estimated from each of the three methods: the Constant method, CAMP and RAMP for 2001 across the 

continental United States. The CMAQ column are the statistics between the paired observed and CMAQ 

concentrations. VS is variance of the standardized errors, RMSS is square root of the mean squared 

standardized errors and MR is the mean of the square root of λ2 (p).

Statistic CMAQ

CMAQ Corrected

Constant
Correction

Non-linear/Non
homoscedastic

(CAMP) Correction

Non-linear/Non
homoscedastic and
Non-homogenous

(RAMP) Correction

ME( ) (µg/m3) −1.05 0.0304 0.0281 −0.0202

 (µg/m3)

7.77 7.18 6.58 6.34

MSE( ) (µg/m3)2 61.5 51.5 43.3 40.1

r( ) (unitless) 0.589 0.625 0.631 0.698

VS( ) (unitless) -- 0.766 0.823 1.05

RMSS( ) (unitless) -- 0.875 0.907 1.03

MR( ) (µg/m3) -- 8.20 7.04 5.45
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